Topological Entropy for Nonuniformly Continuous Maps
نویسنده
چکیده
The literature contains several extensions of the standard definitions of topological entropy for a continuous self-map f : X→X from the case when X is a compact metric space to the case when X is allowed to be noncompact. These extensions all require the space X to be totally bounded, or equivalently to have a compact completion, and are invariants of uniform conjugacy. When themap f is uniformly continuous, it extends continuously to the completion, and the various notions of entropy reduce to the standard ones (applied to this extension). However, when uniform continuity is not assumed, these new quantities can differ. We consider extensions proposed by Bowen (maximizing over compact subsets and a definition of Hausdorff dimension type) and Friedland (using the compactification of the graph of f ) as well as a straightforward extension of Bowen and Dinaburg’s definition from the compact case, assuming that X is totally bounded, but not necessarily compact. This last extension agrees with Friedland’s, and both dominate the one proposed by Bowen (Theorem 6). Examples show how varying the metric outside its uniform class can vary both quantities. The natural extension of Adler–Konheim–McAndrew’s original (metric-free) definition of topological entropy beyond compact spaces dominates these other notions, and is unfortunately infinite for a great number of noncompact examples.
منابع مشابه
Entropy Estimate for Maps on Forests
A 1993 result of J. Llibre, and M. Misiurewicz, (Theorem A [5]), states that if a continuous map f of a graph into itself has an s-horseshoe, then the topological entropy of f is greater than or equal to logs, that is h( f ) ? logs. Also a 1980 result of L.S. Block, J. Guckenheimer, M. Misiurewicz and L.S. Young (Lemma 1.5 [3]) states that if G is an A-graph of f then h(G) ? h( f ). In this pap...
متن کاملEntropy operator for continuous dynamical systems of finite topological entropy
In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملTopological Entropy of Standard Type Monotone Twist Maps
We study invariant measures of families of monotone twist maps Sγ(q, p) = (2q−p+γ ·V ′(q), q) with periodic Morse potential V . We prove that there exist a constant C = C(V ) such that the topological entropy satisfies htop(Sγ) ≥ log(C · γ)/3. In particular, htop(Sγ) → ∞ for |γ| → ∞. We show also that there exist arbitrary large γ such that Sγ has nonuniformly hyperbolic invariant measures μγ w...
متن کاملEntropy of a semigroup of maps from a set-valued view
In this paper, we introduce a new entropy-like invariant, named Hausdorff metric entropy, for finitely generated semigroups acting on compact metric spaces from a set-valued view and study its properties. We establish the relation between Hausdorff metric entropy and topological entropy of a semigroup defined by Bis. Some examples with positive or zero Hausdorff metric entropy are given. Moreov...
متن کاملTOPOLOGICAL ENTROPY OF m-FOLD MAPS
We investigate the relation between preimage multiplicity and topological entropy for continuous maps. An argument originated by Misiurewicz and Przytycki shows that if every regular value of a C1 map has at least m preimages then the topological entropy of the map is at least log m. For every integer, there exist continuous maps of the circle with entropy zero for which every point has at leas...
متن کامل